Нейронные сети и финансовые рынки. Д. Бестенс, В. Ван ден Берг, Д. Вуд

Nieironnyie_sieti_i_finansovyie_rynki.jpg

Книга знакомит со способами применения методологии нейронных сетей для решения задач анализа и прогноза в таких актуальных для современной российской экономики вопросах, как кризисные явления на рынках капитала, налоговые поступления, динамика цен производных финансовых инструментов и индексов курсов акций, эффективность диверсификации портфельных капитатювложений, риск ггредоставления кредитов или банкротство корпораций и банков. Постоянные сравнения с иными применяемыми способами анализа и прогноза (например, статистическими способами анализа временных рядов и классификации или способами технического анализа) помогают читателю точнее определить роль и место нейрон-но-сетевых методов в областях, представляющих для него практический интерес.

Нейронно-сетевая методология, пока мало представленная в российской профессиональной научно-технической литературе, находит все новые успешные применения в практике управления и принятия решений, в том числе — в финансовой и торговой сферах. Лежащая в ее основе теория нелинейных адаптивных систем доказала свою полезность при выработке прогнозов в целом ряде отраслей экономики и финансов.

Повседневная практика финансовых рынков находится в интересном противоречии с академической точкой зрения, согласно которой изменения цен финансовых активов происходят мгновенно, без каких-либо усилий эффективно отражая всю доступную информацию. В действительности же, само существование сотен маркет-мейкеров, трейдеров и фондовых менеджеров, работа которых состоит в том, чтобы делать прибыль, говорит о том, что участники рынка вносят определенный вклад в общую информацию. Более того, так как эта работа стоит дорого, то и объем привнесенной информация должен быть значительным.

Труднее ответить на вопрос о том, как конкретно на финансовых рынках возникает и используется информация, которая может приносить прибыль. Исследования почти всегда показывают, что никакая устойчивая стратегия торговли не дает постоянной прибыли, и это, во всяком случае, так, если учитывать еще и расходы на совершение сделок. Хорошо известно также, что участники рынка (и весь рынок в целом) могут принимать совершенно различные решения, исходя из сходной или даже неизменной информации. Выход Великобритании из механизма валютных курсов европейской валютной системы (ERM) и октябрьский кризис 1987 г.— примеры ситуаций, когда трудно найти разумную объективную причину того, что данное событие произошло именно тогда, когда произошло, а не месяцем раньше или позже.

События такого рода свидетельствуют о том, что участники рынка и своей работе не ограничиваются линейными состоятельными правилами принятия решений, а имеют в запасе несколько сценариев действий, и то, какой из них пускается в ход, зависит подчас от внешне незаметных признаков.

Один из возможных подходов к многомерным и зачастую нелинейным информационным рядам финансового рынка заключается в том, чтобы по возможности подражать образцам поведения участников рынка, используя такие методы искусственного интеллекта, как экспертные системы или нейронные сети.

На моделирование процессов принятия решений этими методами было потрачено много усилий. Оказалось, однако, что экспертные системы в сложных ситуациях хорошо работают лишь тогда, когда системе присуща внутренняя стационарность (т.е. когда на каждый входной вектор имеется единственный не меняющийся со временем лвет). Под такое описание в какой-то степени подходят задачи ком-1лексной классификации или распределения кредитов, но оно пред-ггавляется совершенно неубедительным для финансовых рынков с fix непрерывными структурными изменениями. В случае с финансовыми рынками едва ли можно утверждать, что можно достичь полного или хотя бы в определенной степени адекватного знания о данной предметной области, в то время как для экспертных систем с шгоритмами, основанными на правилах, это— обычное требование.

Нейронные сети предлагают совершенно новые многообещающие возможности для банков и других финансовых институтов, ко-горым по ролу своей деятельности приходится решать задачи в условиях небольших априорных знаний о среде. Характер финансовых рынков драматическим образом меняется с тех пор, как вследствие ослабления контроля, приватизации и появления новых финансовых инструментов национальные рынки слились в общемировые, а в большинстве сектороь рынка возросла свобода финансовых операций. Очевидно, что сами основы управления риском и доходом не могли не претерпеть изменений, коль скоро возможности диверсификации и стратегии защиты от риска изменились до неузнаваемости.

Стационарные линейные модели с большим трудом держатся на плаву в этом бурном море. Напротив, должным образом сконструированные нейронные сети, позволяющие определять по данным не только параметры, но и структуру системы, представляют собой весьма общую схему для описания развивающихся взаимосвязей.

Естественно, что различные области финансового дела вызывают к себе различный интерес. Так, например, одной из сфер применения нейронных сетей для ряда ведущих банков стала проблема изменений позиции доллара США на валютном рынке при большом числе неизменных объективных показателей. Возможности такого применения облегчаются тем, что имеются огромные базы экономических данных, — ведь сложные модели всегда прожорливы в отношении информации.
Котировки облигаций и арбитраж — еще одна область, где задачи расширения и сужения риска, разницы в процентных ставках и ликвидности, глубины и ликвидности рынка являются благоприятным материалом для мощных вычислительных методов.

Прикрепленный файлРазмер
Nieironnyie_sieti_i_finansovyie_rynki.zip2.94 Мб

Основы