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ABSTRACT

The central problem for gamblers is to find positive expectation bets.
But the gambler also needs to know how to manage his money, i.e. how
much to bet. In the stock market (more inclusively, the securities markets)
the problem is similar but more complex. The gambler, who is now an
“investor”, looks for “excess risk adjusted return”. In both these settings,
we explore the use of the Kelly criterion, which is to maximize the expected
value of the logarithm of wealth (“maximize expected logarithmic utility”).

The criterion is known to economists and financial theorists by names
such as the “geometric mean maximizing portfolio strategy”, maximizing
logarithmic utility, the growth-optimal strategy, the capital growth criterion,
ete.

The author initiated the practical application of the Kelly criterion by
using it for card counting in blackjack. We will present some useful formu-
las and methods to answer various natural questions about it that arise in
blackjack and other gambling games. Then we illustrate its recent use in a
successful casino sports betting system. Finally, we discuss its application to
the securities markets where it has helped the author to make a thirty year
total of 80 billion dollars worth of “bets”.
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1 Introduction

The fundamental problem in gambling is to find positive expectation betting
opportunities. The analogous problem in investing is to find investments
with excess risk-adjusted expected rates of return. Once these favorable
opportunities have been identified, the gambler or investor must decide how
much of his capital to bet. This is the problem which we consider here. It
has been of interest at least since the eighteenth century discussion of the St.
Petersburg Paradox (Feller, 1966) by Daniel Bernoulli.

One approach is to choose a goal, such as to minimize the probability of
total loss within a specified number of trials, N. Another example would be
to maximize the probability of reaching a fixed goal on or before N trials
(Browne, 1996).

A different approach, much studied by economists and others, is to value
money using a utility function. These are typically defined for all non-
negative real numbers, have extended real number values, and are non-
decreasing (more money is at least as good as less money). Some examples
are U(z) = 2% 0 < a < oo and U(z) = logz, where log means log,, and
log0 = —oo. Once a utility function is specified, the object is to maximize
the expected value of the utility of wealth.

Daniel Bernoulli used the utility function logz to “solve” the St. Pe-
tersburg Paradox. (But his solution doesn’t eliminate the paradox because
every utility function which is unbounded above, including log, has a mod-
ified version of the St. Petersburg Paradox.) The utility function logz was
revisited by J.L. Kelly (1956) where he showed that it had some remarkable
properties. These were elaborated and generalized in an important paper by
Brieman (1961). Markowitz (1959) illustrates the application to securities.
For a discussion of the Kelly criterion (the “geometric mean criterion”) from
a finance point of view, see McEnally (1986). He also includes additional
history and references.

I was introduced to the Kelly paper by Claude Shannon at M.I.T. in 1960,
shortly after I had created the mathematical theory of card counting at casino
blackjack. Kelly’s criterion was a bet on each trial so as to maximize E log X,
the expected value of the logarithm of the (random variable) capital X. I
used it in actual play and introduced it to the gambling community in the
first edition of Beat the Dealer, Thorp, (1962). If all blackjack bets paid even
money, had positive expectation and were independent, the resulting Kelly
betting recipe when playing one hand at a time would be extremely simple:



bet a fraction of your current capital equal to your expectation. This is
modified somewhat in practice (generally down) to allow for having to make
some negative expectation “waiting bets”, for the higher variance due to the
occurrence of payoffs greater than one to one, and when more than one hand
is played at a time.

Here are the properties that made the Kelly criterion so appealing. For
ease of understanding, we illustrate using the simplest case, coin tossing, but
the concepts and conclusions generalize greatly.

2 Coin Tossing

Imagine that we are faced with an infinitely wealthy oppponent who will
wager even money bets made on repeated independent trials of a biased
coin. Further, suppose that on each trial our win probability is p > 1/2 and
the probability of losing is ¢ = 1 — p. Our initial capital is Xg. Suppose we
choose the goal of maximizing the expected value F(X,,) after n trials. How
much should we bet, By, on the kth trial? Letting T} = 1 if the kth trial is
a win and T} = —1 if it is a loss, then Xy = X 1 + Ty By for k = 1,2,3,. . .,
and X, = Xo + > ;_; TxBx. Then

B(X) = Xo+ 30 B(BTY) = Xo + S (p~ 4)B(By).

Since the game has a positive expectation, i.e., p — ¢ > 0 in this even payoff
situation, then in order to maximize E(X,) we would want to maximize
E(Bg) at each trial. Thus, to maximize expected gain we should bet all
of our resources at each trial. Thus B; = X, and if we win the first bet,
By = 2X,, etc. However, the probability of ruin is given by 1 — p™ and with
p < 1, limp_,o0[1 — p"] = 1 so ruin is almost sure. Thus the “bold” criterion
of betting to maximize expected gain is usually undesirable.

Likewise, if we play to minimize the probability of eventual ruin (i.e.,
“ruin” occurs if X; = 0 on the kth outcome) the well-known gambler’s ruin
formula in Feller (1966) shows that we minimize ruin by making a minimum
bet on each trial, but this unfortunately also minimizes the expected gain.
Thus “timid” betting is also unattractive.

This suggests an intermediate strategy which is somewhere between maxi-
mizing F(X,) (and assuring ruin) and minimizing the probability of ruin (and



minimizing F(X,)). An asymptotically optimal strategy was first proposed
by J.L. Kelly (1956).

In the coin-tossing game just described, since the probabilities and payoffs
for each bet are the same, it seems plausible that an “optimal” strategy will
involve always wagering the same fraction f of your bankroll. To make this
possible we shall assume from here on that capital is infinitely divisible.
This assumption usually does not matter much in the interesting practical
applications.

If we bet according to B; = fX;_;, where 0 < f < 1, this is sometimes
called “fixed fraction” betting. Where S and F' are the number of successes
and failures, respectively, in n trials, then our capital after n trials is X, =
Xo(1+ f)5(1 = f)F, where S+ F = n. With f in the interval 0 < f < 1,
Pr(X, = 0) = 0. Thus “ruin” in the technical sense of the gambler’s ruin
problem cannot occur. “Ruin” shall henceforth be reinterpreted to mean
that for arbitrarily small positive €, lim,_o[Pr(X, < €)] = 1. Even in this
sense, as we shall see, ruin can occur under certain circumstances.

We note that since

6nlog [ﬁ] L/n . Xn
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measures the exponential rate of increase per trial. Kelly chose to maximize
the expected value of the growth rate coeflicient, g(f), where

o) = Efiog (2] = £{Zr0gtr+ 9+ g - )

= plog(l + f) + qlog(1 — f).

Note that g(f) = (1/n)E(log X,) — (1/n)log Xy so for n fixed, maximiz-
ing g(f) is the same as maximizing Elog X,,. We usually will talk about
maximizing ¢g(f) in the discussion below. Note that
ey P9 p—q—f
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when f = f*=p—gq.
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Now
9"(f)=-p/(L+f)?—q/(1-f)?<0

so that ¢'(f) is monotone strictly decreasing on [0,1). Also ¢'(0) =p—qg >0
and lims_,;- g'(f) = —oo. Therefore by the continuity of ¢'(f), g(f) has
a unique maximum at f = f* where g(f*) = plogp + qlogq + log2 > 0
Moreover, g(0) = 0 and lim;_,,- g(f) = —oo so there is a unique number
fe > 0, where 0 < f* < f. < 1, such that g(f.) = 0. The nature of
the function g(f) is now apparent and a graph of g(f) versus f appears as
shown in Figure 1.

The following theorem recounts the important advantages of maximizing
9(f). The details are omitted here but proofs of (i), (ii), (iii), and (vi) for
the simple binomial case can be found in Thorp (1969); more general proofs
of these and of (iv) and (v) are in Breiman (1961).

Theorem 1 (i) If g(f) > 0, then lim, o X, = 00 almost surely, i.e., for
each M, Prlliminf, . X, > M| = 1;

(%) If g(f) < 0, then lim, .., X, = 0 almost surely; i.e., for each e > 0,
Prllimsup,_ . X, <] = 1;

(#1) If g(f) = 0, then limsup,,_, ., X, = ooa.s. and liminf, . X, = 0a.s.

(v) Given a strategy ®* which mazimizes Elog X,, and any other “essen-
tially different” strategy ® (not necessarily a fized fractional betting strategy),
then limy, o Xn(9*)/ X, (®) = cca.s.

(v) The expected time for the current capital X, to reach any fized pre-
assigned goal C' is, asymptotically, least with a strategy which maximizes
Elog X,.

(vi) Suppose the return on one unit bet on the ith trial is the binomial
random variable U;; further, suppose that the probability of success is p;,
where 1/2 < p; < 1. Then Elog X,, is mazimized by choosing on each trial
the fraction f} = p;i — q; which maximizes Flog(1 + f;U;).

Part (i) shows that, except for a finite number of terms, the player’s
fortune X,, will exceed any fixed bound M when f is chosen in the inter-
val (0, f.). But, if f > f., part (ii) shows that ruin is almost sure. Part
(iii) demonstrates that if f = f., X, will (almost surely) oscillate ran-
domly between 0 and + oco. Thus, one author’s statement that X, — X,
as n — oo, when f = f, is clearly contradicted. Parts (iv) and (v) show
that the Kelly strategy of maximizing F log X, is asymptotically optimal by
two important criteria. An “essentially different” strategy is one such that
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the difference F'ln X} — E'ln X, between the Kelly strategy and the other
strategy grows faster than the standard deviation of In X} — In X,,, ensuring
P(ln X} —In X, > 0) — 1. Part (vi) establishes the validity of utilizing the
Kelly method of choosing f; on each trial (even if the probabilities change
from one trial to the next) in order to maximize F log X,,.

Fzample 2.1 Player A plays against an infinitely wealthy adversary. Player
A wins even money on successive independent flips of a biased coin with a
win probability of p = .53 (no ties). Player A has an initial capital of X,
and capital is infinitely divisible. Applying Theorem 1(vi), f* = p—q =
.53 — .47 = .06. Thus 6% of current capital should be wagered on each play
in order to cause X, to grow at the fastest rate possible consistent with
zero probability of ever going broke. If Player A continually bets a fraction
smaller than 6%, X,, will also grow to infinity but the rate will be slower.

If Player A repeatedly bets a fraction larger than 6%, up to the value
fe, the same thing applies. Solving the equation g(f) = .53log(1 + f) +
ATlog(l — f) = 0 numerically on a computer yields f, = .11973~. So,
if the fraction wagered is more than about 12%, then even though Player
A may temporarily experience the pleasure of a faster win rate, eventual
downward fluctuations will inexorably drive the values of X, toward zero.
Calculation yields a growth coefficient of g(f*) = f(.06) = .001801 so that
after n successive bets the log of Player A’s average bankroll will tend to
.001801n times as much money as he started with. Setting .001801n = log 2
gives an expected time of about n = 385 to double the bankroll.

The Kelly criterion can easily be extended to uneven payoff games. Sup-
pose Player A wins b units for every unit wager. Further, suppose that on
each trial the win probability is p > 0 and pb— ¢ > 0 so the game is advanta-
geous to Player A. Methods similar to those already described can be used
to maximize

9(f) = Elog(Xn/Xo) = plog(1 +bf) + qlog(l — f).

Arguments using calculus yield f* = (bp — ¢)/b, the optimal fraction of
current capital which should be wagered on each play in order to maximize
the growth coeflicient g(f).

This formula for f* appeared in Thorp (1984) and was the subject of an
April 1997 discussion on the internet at Stanford Wong’s website,
http://bj21.com (miscellaneous free pages section). One claim was that one
can only lose the amount bet so there was no reason to consider the (simple)



generalization of this formula to the situation where a unit wager wins b with
probability p > 0 and loses a with probability ¢. Then if the expectation
m=bp—aq >0, f* >0 and f* = m/ab. The generalization does stand
up to the objection. One can buy on credit in the financial markets and
lose much more than the amount bet. Consider buying commodity futures
or selling short a security (where the loss is potentially unlimited). See, e.g.,
Thorp and Kassouf (1967) for an account of the E.L. Bruce short squeeze.
For purists who insist that these payoffs are not binary, consider selling
short a binary digital option. These options are described in Browne (1996).
A criticism sometimes applied to the Kelly strategy is that capital is not,
in fact, infinitely divisible. In the real world, bets are multiples of a minimum
unit, such as §1 or $.01 (penny “slots”). In the securities markets, with
computerized records, the minimum unit can be as small as desired. With
a minimum allowed bet, “ruin” in the standard sense is always possible. It
is not difficult to show, however, (see Thorp and Walden, 1966b) that if the
minimum bet allowed is small relative to the gambler’s initial capital, then
the probability of ruin in the standard sense is “negligible” and also that
the theory herein described is a useful approximation. This section follows

Rotando and Thorp (1992).

3 Optimal growth: Kelly criterion formulas
for practitioners

Since the Kelly criterion asymptotically maximizes the expected growth rate
of wealth, it is often called the optimal growth strategy. It is interesting to
compare it with the other fixed fraction strategies. I will present some results
that I have found useful in practice. My object is to do so in a way that is
simple and easily understood. These results have come mostly from sitting
and thinking about “interesting questions”. I have not made a thorough
literature search but I know that some of these results have been previously
published and in greater mathematical generality. See e.g. Browne (1995,
1996) and the references therein.

(a) The probability of reaching a fixed goal on or before n trials.
We first assume coin tossing. We begin by noting a related result for stan-
dard Brownian motion. Howard Tucker showed me this in 1974 and it is
probably the most useful single fact I know for dealing with diverse problems



in gambling and in the theofy of financial derivatives.
For standard Brownian motion X (t), we have

(3.1) P(sup[X(t)—(at+b)] >0, 0 <t < T) = N(—a—B)+e **N(a-pf)

where a = ay/T and 8 = b/ VT. See Figure 2. See Appendix 2 for Tucker’s
derivation of (3.1).

In our application a < 0, b > 0 so we expect limy_,o, P(X (t) > at+b, 0 <
t<T)=1.

Let f be the fraction bet. Assume independent identically distributed
(idd) trals ¥;, ¢ =1,..,n, with P(Y; =1)=p>1/2, P(Y;, = —-1) = ¢ <
1/2; also assume p < 1 to avoid the trivial case p = 1.

Bet a fixed fraction f, 0 < f < 1, at each trial. Let V; be the value of
the gambler or investor’s bankroll after & trials, with initial value V4. Choose
initial stake Vo = 1 (without loss of generality); number of trials n; goal
C>1

What is the probability that Vi > C for some k, 1 < k < n? This is the
same as the probability that log V;, > log C for some k, 1 < k < n. Letting
In = log, we have:

k
Ve = [[(1+Yif) and

i—-1

k
Vi = Y In(l+Yif)
i=1

k
EnVy = S Eln(l+Yf)

i=1

Var(In Vi) = > Var(In(l +Y;f))
Eln(l1+Y:f) = pln(l+f)+qln(l - f)=m=g(f)
Var[ln(1 +Yif)] = pln(l + f))* + ¢(ln(t — f)]* —m?
= (p=p)In(1+ N+ (¢ — )In(1 = £ — 2pgIn(1 + f)In(1 — f)
= pg{[In(1+ /)1* - 2In(1 + f)In(1 — f) + [In(1 — £)*}
= pe{ln[(1+ f)/Q- N}’ =5

Drift in n trials: mn



Variance in n trials: s?n
InV, >InC, 1 <k <niff
k
SIn(l1+Yf)>InC, 1<k <niff
i=1
k
Se=2[n(14+Yif)—m|>InC—mk, 1 <k<n

i=1

E(Sk) =0 Var(S’k) = 82k’

We want Prob(S, > InC — mk, 1 <k < n).

Now we use our Brownian motion formula to approximate S,, by Prob(X (t) >
InC—mt/s?, 1 <t < s?n) where each term of S, is approximated by an X (t),
drift 0 and variance s? (0 <t < s%,82 <t <252 ...,(n—1)s? <t < ns?).
Note: the approximation is only “good” for “large” n.

Then in the original formula (3.1):

T = s°n

b = InC

a = —m/s®

a = avT =—my/n/s
B = b/VT =InC/sy/n
Fxample 3.1

10*

51

49

0117

= 000165561
000136848
Then P() = .9142

S waw 3 Q
1

»
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Example 3.2
Repeat with

fo= 02
then m = .000200013
s2 = 000399947
and P() = .9214



(b) The probability of ever being reduced to a fraction z of this
initial bankroll.

This is a question that is of great concern to gamblers and investors. It
is readily answered, approximately, by our previous methods.

Using the notation of the previous section, we want P(V, < z for some k,
1 < k < o). Similar methods yield the (much simpler) continuous approxi-
mation formula:

Prob(-) = 2% where @ = —m/s? and b = —Inz which can be rewritten
as
(3.2) Prob(-) = 2" (2m/s?) where " means exponentiation.

FExample 3.3.

p=51 f=fr=.02
2m/s? = 1.0002
Prob(:) =z

We will see in section 7 that for the limiting continuous approximation
and the Kelly optimal fraction f*, P(Vi(f*) < z for some k > 1) = z.

My experience has been that most cautious gamblers or investors who
use Kelly find the frequency of substantial bankroll reduction to be uncom-
fortably large. We can see why now. To reduce this, they tend to prefer
somewhat less than the full betting fraction f*. This also offers a margin
of safety in case the betting situations are less favorable than believed. The
penalty in reduced growth rate is not severe for moderate underbetting. We
discuss this further in section 7.

(c) The probability of being at or above a specified value at the
end of a specified number of trials.

Dr. Richard Hecht (1995) suggested setting this probability as the goal
and used a computerized search method to determine optimal (by this cri-
terion) fixed fractions for p — ¢ = .02 and various ¢, n and specified success
probabilities.

This is a much easier problem than the similar sounding (a). We have for
the probability that X (7) at the end exceeds the goal:

PX(T)>aT +0b) = —\/217r=T / exp{—z?/2T }dx
- / exp{—u®/2}du

27T
aTY24pT—1/2
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where © = ’L‘/\/T soz = al +bgives uV/T = aT +band U = aTY2 4+ 671/,
The integral equals

(33) 1 — N(@TY? +bT"Y?) = N(—(aTV? + b7~ Y/2))
1= N{x<+p) = N(— < —f).

For example (3.1) f = .0117 and P = .7947. For example (3.2) P = .7433.
Example (3.1) is for the Hecht optimal fraction and example (3.2) is for the
Kelly optimal fraction. Note the difference in P values.

Our numerical results are consistent with Hecht’s simulations in the in-
stances we have checked.

Browne (1996) has given an elegant continuous approximation solution
to the problem: What is the strategy which maximizes the probability of
reaching a fixed goal C on or before a specified time n and what is the
corresponding probability of success? Note that the optimal strategy will in
general involve betting varying fractions, depending on the time remaining
and the distance to the goal.

As an extreme example, just to make the point, suppose n = 1 and
C = 2. If Xy < 1 then no strategy works and the probability of success
is 0. But if 1 < Xy < 2 one should bet at least 2 — Xj, thus any fraction
f > (2= Xo)/Xo, for a success probability of p. Another extreme example:
n =10, C = 21° = 1024, Xy = 1. Then the only strategy which can succeed
is to bet f = 1 on every trial. The probability of success is p'° for this
strategy and O for all others (if p < 1), including Kelly.

(d) Continuous approximation of expected time to reach a goal.

According to Theorem 1(v), the optimal growth strategy asymptotically
minimizes the expected time to reach a goal. Here is what this means.
Suppose for goal C' that m(C) is the greatest lower bound over all strategies
for the expected time to reach C. Suppose t*(C) is the expected time using
the Kelly strategy. Then Cll_r'rgo (t*(c)/m(c)) = 1.

The continuous approximation to the expected number of trials to reach
the goal C' > Xy = 11is

(3.4) n(C, f) = (InC)/g(f)

where f is any fixed fraction strategy. Appendix III has the derivation. Now
g(f) has a unique maximum at g(f*) so n(C, f) has a unique minimum at
f = f*. Moreover, we can see how much longer it takes, on average, to reach
C if one deviates from f*.

11



(e) Comparing fixed fraction strategies: the probability that one
strategy leads another after n trials.

Theorem 1(iv) says that wealth using the Kelly strategy will tend, in
the long run, to an infinitely large multiple of wealth using any “essentially
different” strategy. It can be shown that any fixed f # f* is an “essentially
different” strategy. This leads to the question of how fast the Kelly strategy
gets ahead of another fixed fraction strategy, and more generally, how fast
one fixed fraction strategy gets ahead of (or behind) another.

If W, is the number of wins in n trials and n—W,, is the number of losses,

G(f) = (Wn/n)In(l+ f) + (1 = Wa/n)In(1 - f)

is the actual (random variable) growth coefficient.
As we saw, its expectation is

(3.5) 9(f) = E(G(f)) = plog(1 + f) + qlog(1 - f)
and the variance of G(f) is
(3.6) VarG(f) = ((pg)/m){In((1 + £)/(1 = f))}*

and it follows that G(f), which has the form G(f) = a(XTk)/n + b, is
approximately normally distributed with mean g(f) and variance VarG(f).
This enables us to give the distribution of X, and once again answer the
question in 3(c). We illustrate this with an example.

Ezample 3.3 p=.51 ¢g=49 f*=.02 N =10,000 and

s = standard deviation of G(f)

g/s | f g s | Pr(G(f) L0)
1.5 | .01 | .000150004 | .0001 067
1.0 | .02 | .000200013 | .0002 159
05 | .03 | .000149977 | .0003 309

Continuing, we find the distribution of G(f2) — G(f1). We consider two
cases.
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Case 1. The same game.

Here we assume both players are betting on the same trials, e.g. betting
on the same coin tosses, or on the same series of hands at blackjack, or on
the same games with the same odds at the same sports book. In the stock
market, both players could invest in the same “security” at the same time,
e.g. a no—load S&P 500 index mutual fund.

We find

E(G(f2) — G(f1)) = plog((1 + f2) /(L + f1)) + qlog((1 — f2)/(1 = f1))
and Var(G(fz) — G(f1)) =

o s (122) (2]

where G(f;) — G(f1) is approximately normally distributed with this mean
and variance.
Case 2. Identically distributed independent games.

This corresponds to betting on two different series of tosses with the
same coin. E(G(fz) — G(f1)) is as before. But now Var(G(fz) — G(f1)) =
Var(G(f2))+Var(G(f1)) because G(f2) and G(f1) are now independent. Thus

Var(G(f2) — G(f1)) =
(pa/n) {llog <i - j:zﬂz i

azlog(ijﬁ) bzlog(iiﬁ).

Then in case 1, Vi = (pg/n)(a — b)? and in case 2, V3 = (pg/n)(a? + b?) and
since a,b > 0, V; <V, as expected. We can now compare the Kelly strategy
with other fixed fractions to determine the probability that Kelly leads after
n trials. Note that this probability is always greater than 1/2 (within the ac-
curacy limits of the continuous approximation, which is the approximation of
the binomial distribution by the normal, with its well known and thoroughly
studied properties) because g(f*) — g(f) > 0 where f* = p—q and f # f*

is some alternative. This can fail to be true for small n, where the approx-
imation is poor. As an extreme example to make the point, if n = 1, any

Let
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f > f* beats Kelly with probability p > 1/2. If instead n = 2, f > f* wins
with probability p? and p? > 1/2if p > 1/4/2 = .7071. Also, f < f* wins
with probability 1 —p? and 1 — p? > 1/2 if p? < 1/2, i.e. p < 1/4/2 = .7071.
So when n = 2, Kelly always loses more than half the time to some other f
unless p = 1/4/2.

We now have the formulas we need to explore many practical applications
of the Kelly criterion.

4 The Long Run: When Will The Kelly Strat-
egy “Dominate”?

The late John Leib wrote several articles for Blackjack Forum which were
critical of the Kelly criterion. He was much bemused by “the long run”.
What is it and when, if ever, does it happen?

We begin with an example.

Ezample 4.1 p=.51, mn=10,000

Vi and s;, ¢ = 1,2 are the variance and standard deviation, respectively, for
3(e) Cases 1 and 2, and R = V3/V; = (a® +b%)/(a — b)? so s; = s;v/R. Table
4.1 summarizes some results. We can also approximate VR with a power
series estimate using only the first term of @ and of b: a = 2f1,b = 2f5 so

VR =\/f2+ f2/| fi— f2 |. The approximate results, which agree extremely
well, are 2.236, 3.606 and 1.581, respectively.

TABLE 4.1 Comparing strategies

1 lfe |2—an $1 (92— g1)/s1 | VR

.01 ] .02 | .00005001 | .00010000 | .50 2.236
031 .02 | .00005004 | .00010004 | .50 3.604
.03 | .01 | .00000003 | .00020005 | .00013346 1.581

The first two rows show how nearly symmetric the behavior is on each
side of the optimal f* = .02. The column (g2 — g1)/s; shows us that f* = .02
only has a .5 standard deviation advantage over its neighbors f = .01 and
f = .03 after n = 10,000 trials. Since this advantage is proportional to /n,
the column (g — g1)/s; from Table 4.1 gives the results of Table 4.2:
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TABLE 4.2 The long run: (g2 — g1)/s after n trials.

filfo In=10"n=4%10*[n=16%10* | n = 10°
01].02].5 1.0 2.0 5.0
034.021.5 1.0 2.0 5.0
.03 | .01 ] .000133 | .000267 .000534 001335

The factor v/R in Table 4.1 shows how much more slowly f, dominates
f1 in Case 2 versus Case 1. The ratio (go — g1)/s2 is V'R times as large so
the same level of dominance takes R times as long. When the real world
comparisons of strategies for practical reasons often use Case 2 comparisons
rather than the more appropriate Case 1 comparisons, the dominance of f*
is further obscured. An example is players with different betting fractions
at blackjack. Case 1 corresponds to both betting on the same sequence of
hands. Case 2 corresponds to them playing at different tables (not the same
table, because Case 2 assumes independence). (Because of the positive corre-
lation between payoffs on hands played at the same table, this is intermediate
between Case 1 and Case 2.)

It is important to understand that “the long run”, i.e. the time it takes
for f* to dominate a specified neighbor by a specified probability, can vary
without limit. Each application requires a separate analysis. In cases such
as example 4.1, where dominance is “slow”, one might argue that using f*
is not important. As an argument against this, consider two coin-tossing
games. In game 1 your edge is 1.0%. In game 2 your edge is 1.1%. With one
unit bets, after n trials the difference in expected gain is Ey — E; = .001ln
with standard deviation s of about 1/2n hence (E; — E})/s = .001/n/\/2
which is 1 when n = 2 % 10%. So it takes two million trials to have an 84%
chance of the game 2 results being better than the game 1 results. Does that
mean it’s unimportant to select the higher expectation game?

5 Blackjack

For a general discussion of blackjack, see Thorp (1962, 1966), Wong (1994)
and Griffin (1995). The Kelly criterion was introduced for blackjack by Thorp
(1962). The analysis is more complicated than that of coin tossing because
the payofls are not simply one to one. In particular the variance is generally
more than 1 and the Kelly fraction tends to be less than for coin tossing
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with the same expectation. Moreover, the distribution of various payoffs
depends on the player advantage. For instance the frequency of pair splitting,
doubling down, and blackjacks all vary as the advantage changes. By binning
the probability of payoff types according to ex ante expectation, and solving
the Kelly equations on a computer, a strategy can be found which is as close
to optimal as desired.

There are some conceptual subtleties which are noteworthy. To illustrate
them we’ll simplify to the coin toss model.

At each trial, we have with probability .5 a “favorable situation” with
gain or loss X per unit bet such that P(X = 1) = .51, P(X = —1) = .49
and with probability .5 an unfavorable situation with gain or loss Y per unit
bet such that P(Y = 1) = .49 and P(Y = —1) = .51. We know before we
bet whether X or Y applies.

Suppose the player must make small ”waiting” bets on the unfavorable
situations in order to be able to exploit the favorable situations. On these
he will place “large” bets. We consider two cases.

Case 1. Bet f; on unfavorable situations and find the optimal f* for
favorable situations. We have

(5.1) g(f) = .5(5llog(l+ f)+ .491og (1 — f))
+ .5(491og (1 + fo) + .51log (1 — fo))

Since the second expression in (5.1) is constant, f maximizes g(f) if it max-
imizes the first expression, so f* = p — ¢ = .02, as usual. It is easy to
verify that when there is a spectrum of favorable situations the same recipe,
f& = pi — g for the ith situation, holds. Again, in actual blackjack S would
be adjusted down somewhat for the greater variance. With an additional
constraint such as f; < kfo, where k is typically some integral multiple of
Jfo, representing the betting spread adopted by a prudent player, then the
solution is just f; < min(f}, kfo).

Curiously, a seemingly similar formulation of the betting problem leads
to rather different results.

Case 2. Bet f in favorable situations and af in unfavorable situations,
0<a<1.

Now the bet sizes in the two situations are linked and both the analysis
and results are more complex. We have a Kelly growth rate of

(5.2) 9(f) = .5(5llog(1+ f)+.491log (1 - £))
+ .5(491og (1 + af) + .51log (1 — af))
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If we choose a = 0 (no bet in unfavorable situations) then the maximum
value for g(f) is at f* = .02, the usual Kelly fraction.

If we make “waiting bets”, corresponding to some value of a > 0, this
will shift the value of f* down, perhaps even to 0. The expected gain divided
by the expected bet is .02(1 —a)/(1 +a),a > 0. If a = 0 we get .02, as
expected. If a = 1, we get 0, as expected: this is a fair game and the Kelly
fraction is f* = 0. As a increases from 0 to 1 the (optimal) Kelly fraction
f* decreases from .02 to 0. Thus the Kelly fraction for favorable situations
is less in this case when bets on unfavorable situations reduce the overall
advantage of the game.

Arnold Snyder called to my attention the fact that Winston Yamashita
had (also) made this point (March 18, 1997) on the “free” pages, miscella-
neous section, of Stanford Wong’s web site.

For this example, we find the new f* for a given value of a, 0 < a < 1,
by solving ¢'(f) = 0. A value of a = 1/3, for instance, corresponds to a bet
of 1/3 unit on Y and 1 unit on X, a betting range of 3 to 1. The overall
expectation is .01. Calcuation shows f* = .012001. Table 5.1 shows how f*
varies with a.

Table 5.1 f* versus a.

a fr a J a 7

0 .0200 1/3 0120 70040
1 .0178 4 0103 8 0024
2 .0154 5 .0080 9  .0011
3 .0128 6 .0059 1.0 .0000

To understand why Case 1 and Case 2 have different f*, look first at
equation (5.1). The part of g(f) corresponding to the unfavorable situations
is fixed when fy is fixed. Only the part of g(f) corresponding to the favorable
situations is affected by varying f. Thus we maximize g(f) by maximizing it
over just the favorable situations. Whatever the result, it is then reduced by
a fixed quantity, the part of g containing fy. On the other hand, in equation
(5.2) both parts of g(f) are affected when f varies, because the fraction af
used for unfavorable situations bears the constant ratio a to the fraction f
used in favorable situations. Now the first term, for the favorable situations,
has a maximum at f = .02, and is approximately “flat” nearby. But the
second term, for the unfavorable situations, is negative and decreasing mod-
erately rapidly at f = .02. Therefore, it we reduce f somewhat, this term
increases somewhat, while the first term decreases only very slightly. There
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is a net gain so we find f* < .02. The greater a is, the more important is
the effect of this term so the more we have to reduce f to get f*, as Ta-
ble 5.1 clearly shows. When there is a spectrum of favorable situations the
solution is more complex and can be found through standard multivariable
optimization techniques.

The more complex Case 2 corresponds to what the serious blackjack
player is likely to need to do in practice. He will have to limit his cur-
rent maximum bet to some multiple of his current minimum bet. As his
bankroll increases or decreases, the corresponding bet sizes will increase or
decrease proportionately.

6 Sports Betting

In 1993 an outstanding young computer science Ph.D. told me about a suc-
cessful sports betting system that he had developed. Upon review I was
convinced. I made suggestions for minor simplifications and improvements.
Then we agreed on a field test. We found a person who was extremely likely
to always be regarded by the other sports bettors as a novice. I put up a test
bankroll of $50,000 and we used the Kelly system to estimate our bet size.

We bet on 101 days in the first four and a half months of 1994. The system
works for various sports. The results appear in Figures 3 and 4. After 101
days of bets, our $50,000 bankroll had a profit of $123,000, about $68,000
from Type 1 sports and about $55,000 from Type 2 sports. The expected
returns are shown as about $62,000 for Type 1 and about $27,000 for Type
2. One might assign the additional $34,000 actually won to luck. But this is
likely to be at most partly true because our expectation estimates from the
model were deliberately chosen to be conservative. The reason is that using
too large an f* and overbetting is much more severely penalized than using
too small an f* and underbetting.

Though $123,000 is a modest sum for some, and insignificant by Wall
Street standards, the system performed as predicted and passed its test. We
were never more than a few thousand behind. The farthest we had to invade
our bankroll to place bets was about $10,000.

Our typical expectation was about 6% so our total bets ( “action”) were
about $2,000,000 or about $20,000 per day. We typically placed from five
to fifteen bets a day and bets ranged from a few hundred dollars to several
thousand each, increasing as our bankroll grew.
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Though we had a net win, the net results by casino varied by chance from
a substantial loss to a large win. Particularly hard hit was the “sawdust
joint” Little Caesar’s. It “died” towards the end of our test and I suspect
that sports book losses to us may have expedited its departure.

One feature of sports betting which is of interest to Kelly users is the
prospect of betting on several games at once. This also arises in blackjack
when (a) a player bets on multiple hands or (b) two or more players share a
common bankroll. The standard techniques readily solve such problems. We
illustrate with:

Ezxample 6.1. Suppose we bet simultaneously on two independent favor-
able coins with betting fractions f; and f,; and with success probabilities p;
and py, respectively. Then the expected growth rate is given by

g(f1,fo) = pipin (14 fi+ fo) + piqein (1 + fL — f2)
+ @paln (1 — fi+ f2) + qigeln (1 = f1 — fo)

To find the optimal f} and f; we solve the simultaneous equations 9g/df; = 0
and dg/0fs = 0. The result is

PiP2 — 192
+ fo ==
Lt 1z P1iP2 + 192
(6.1) fi—fo= P192 — @iP2 _ d
192 + q1p2

fi=(c+d)/2  f3=(c—d)/2
These equations pass the symmetry check: interchanging 1 and 2 through-
out maps the equation set into itself.
An alternate form is instructive. Let m; = p; — q;, © = 1,2 so p; =
(14 my;)/2 and g; = (1 — m;)/2. Substituting in (6.1) and simplifying leads
to:

my + my oMy —my

6.2 = =
( ) ¢ 1 + mime 1-—- mimy

my (1 —mgz)

Heam—eas 2=

l—m12m22

my (1 —my 2)
1-— mq 2m2 2
which shows clearly the factors by which the f are each reduced from m;.

Since the m; are typically a few percent, the reduction factors are typically
very close to 1.
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In the special case py = p; = p,d = 0 and f* = ff = f3 = ¢/2 =
(p—q)/(2(p* +¢?)). Letting m = p— q this may be written f* = m/(1+m?)
as the optimal fraction to bet on each coin simultaneously, compared to
Jf* = m to bet on each coin sequentially.

Our simultaneous sports bets were generally on different games and typ-
ically not numerous so they were approximately independent and the appro-
priate fractions were only moderately less than the corresponding single bet
fractions. Question: Is this always true for independent simultaneous bets?
Simultaneous bets on blackjack hands at different tables are independent but
at the same table they have a pairwise correlation that has been estimated
at 0.5 (Griffin, 1995, p.142). This should substantially reduce the Kelly frac-
tion per hand. The blackjack literature discusses approximations to these
problems. On the other hand, correlations between the returns on securities
can range from nearly -1 to nearly 1. An extreme correlation often can be
exploited to great advantage through the techniques of “hedging”. The risk
averse investor may be able to acquire combinations of securities where the
expectations add and the risks tend to cancel. The optimal betting fraction
may be very large.

The next example is a simple illustration of the important effect of co-
variance on the optimal betting fraction.

Ezample 6.2 We have two favorable coins as in the previous example but
now their outcomes need not be independent. For simplicity assume the
special case where the two bets have the same payoff distributions, but with
a joint distribution as in Table 6.1.

Now c+m+b=(1+m)/2s0b=(1—m)/2— c and therefore 0 < ¢ <
(1-m)/2.

TABLE 6.1 Joint distribution of two “identical” favorable coins
with correlated outcomes.

Xl . Xg 1 -1
1 c+m
-1 b C

jon

Calculation shows Var(X;) = 1 —m?, Cor(X;, X;) = 4c — (1 — m)? and
Cor(X1, Xz) = [4c — (1 — m)?]/(1 — m?). The symmetry of the distribution
shows that g(f, fo) will have its maximum at f; = f, = f so we simply
need to maximize g(f) = (¢ + m)In(l + 2f) + cln(1 — 2f). The result is
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f*=m/(2(2c +m)). We see that for m fixed, as ¢ decreases from (1 —m)/2
and cor(Xi, Xz2) = 1, to 0 and cor(X;, X,) = —(1—m)/(14+m), f* for each
bet increases from m/2 to 1/2, as in Table 6.2.

TABLE 6.2 f* increases as Cor (X;, X;) decreases.

COI"(Xl,Xg) C f*
1 (1 —m)/2 m/2

0 (1—m?)/4 [ m/(1 +m?)
—(L=m)/(1 +m) 0 1/2

It is important to note that for an exact solution or an arbitrarily accu-
rate numerical approximation to the simultaneous bet problem, covariance
or correlation information is not enough. We need to use the entire joint
distribution to construct the g function.

We stopped sports betting after our successful test for reasons including:
(1) It required a person on site in Nevada. (2) Large amounts of cash and
winning tickets had to be transported between casinos. We believed this was
very risky. To the sorrow of others, subsequent events confirmed this. (3) It
was not economically competitive with our other operations.

If it becomes possible to place bets telephonically from out of state and
to transfer the corresponding funds electronically, we may be back.

7 Wall Street: the biggest game

To illustrate both the Kelly criterion and the size of the securities markets, we
return to the study of the effects of correlation as in Example 6.2. Consider
the more symmetric and esthetically pleasing pair of bets U, and U,, with
joint distribution given in Table 7.1

TABLE 7.1 Joint distribution of U; and Us,.

Uli Uzim,2+1 mg—‘l
my + 1 a 1/2—a
my — 1 1/2—a a
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Clearly 0 < a < 1/2 and Cor(U;, U;) = Cor(Uy, Us) = 4a — 1 increases
from —1 to 1 as a increases from 0 to 1/2. Finding a general solution for
(ff, f3) appears algebraically complicated (but specific solutions are easy to
find numerically), which is why we chose Example 6.2 instead. Even with
reduction to the special case m; = my = m and the use of symmetry to
reduce the problem to finding f* = f; = f5, a general solution is still much
less simple. But consider the instance when a = 0 so Cor(Uy, Uy) = —1.
then g(f) = In(1 + 2mf) which increases without limit as f increases. This
pair of bets is a “sure thing” and one should bet as much as possible.

This is a simplified version of the classic arbitrage of securities markets:
find a pair of securities which are identical or “equivalent” and trade at
disparate prices. Buy the relatively underpriced security and sell short the
relatively overpriced security, achieving a correlation of —1 and “locking in”
a riskless profit. An example occured in 1983. My investment partnership
bought $ 330 million worth of “old” AT & T and sold short $ 332.5 million
worth of when-issued “new” AT & T plus the new “seven sisters” regional
telephone companies. Much of this was done in a single trade as part of
what was then the largest dollar value block trade ever done on the New
York Stock Exchange (December 1, 1983).

In applying the Kelly criterion to the securities markets, we meet new
analytic problems. A bet on a security typically has many outcomes rather
than just a few, as in most gambling situations. This leads to the use of
continuous instead of discrete probability distributions. We are led to find
f to maximize g(f) = Ein(l + fX) = [in(l + fz)dP(z) where P(z) is
a probability measure describing the outcomes. Frequently the problem is
to find an optimum portfolio from among n securities, where n may be a
“large” number. In this case z and f are n-dimension vectors and fz is
their scalar product. We also have constraints. We always need 1 + fz > 0
so In(-) is defined, and 3" f; = 1 (or some ¢ > 0) to normalize to a unit
(or to a ¢ > 0) investment. The maximization problem is generally solvable
because g(f) is concave. There may be other constraints as well for some or
all 7 such as f; > 0 (no short selling), or f; < M; or f; > m; (limits amount
invested in ith security), or Y | f; |< M (limits total leverage to meet margin
regulations or capital requirements). Note that in some instances there is not
enough of a good bet or investment to allow betting the full f*, so one is
forced to underbet, reducing somewhat both the overall growth rate and the
risk. This is more a problem in the gaming world than in the much larger
securities markets. More on these problems and techniques may be found in
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the literature.

(a) Continuous approximation.

There is one technique which leads rapidly to interesting results. Let X
be a random variable with P(X = m +s) = P(X = m — s) = 0.5. Then
E(X) = m, Var(X) = s®. With initial capital V;, betting fraction f, and
return per unit of X, the result is

VI =Wl+A-f)r+fX)=VW(1+r+f(X-1),

where 7 is the rate of return on the remaining capital, invested in, e.g.,
Treasury bills. Then

g(f) = EG(U)=EWV(f)/V))=Eln(l+r+f(X—-r))
= 05ln(l4+r+f(m—r+s)+05n(l+r+f(im—r—s)).

Now subdivide the time interval into 7 equal independent steps, keeping the
same drift and the same total variance. Thus m, s? and r are replaced by
m/n, s*/n and r/n, respectively. We have n independent X;, s = 1, ..., n,
with

P <X¢ =m/n+ sn_l/z) =P (Xi =m/n — sn_l/z) =05
Then

n

Va () /Yo =110+ 1= f)r+fX:)

i=1
Taking E(log(-)) of both sides gives g(f). Expanding the result in a power
series leads to

(7.1) g(f)=r+f(m—r)=s"f/240(n"?)

where 0(n~1/2) has the property n'/20(n~'/2) is bounded as n — oo. Letting
n — oo in (7.1) we have

(7.2) oo f) =7+ f(m —1) — 5*f2/2

The limit V = Vo (f) of Vo(f) as n — oo corresponds to a log normal
diffusion process, which is a well-known model for securities prices. The “se-
curity” here has instantaneous drift rate m, variance rate s, and the riskless
investment of “cash” earns at an instanteous rate r. Then go(f) in (7.2) is
the (instantaneous) growth rate of capital with investment or betting fraction
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f. There is nothing special about our choice of the random variable X. Any
bounded random variable with mean E(X) = m and variance Var (X) = s2
will lead to the same result. Note that f no longer needs to be less than
or equal to 1. The usual problems, with log(-) being undefined for negative
arguments, have disappeared. Also, f < 0 causes no problems. This simply
corresponds to selling the security short. If m < r this could be advanta-
geous. Note further that the investor who follows the policy f must now
adjust his investment “instantaneously”. In practice this means adjusting
in tiny increments whenever there is a small change in V. This idealiza-
tion appears in option theory. It is well known and does not prevent the
practical application of the theory (Black and Scholes, 1973). Our previous
growth functions for finite sized betting steps were approximately parabolic
in a neighborhood of f* and often in a range up to 0 < f < 2f*, where also
often 2f* = f.. Now with the limiting case (7.2), go.(f) is exactly parabolic
and very easy to study.

Lognormality of V(f)/Vs means log(V(f)/Vo) is N(M, S?) distributed,
with mean M = go(f)t and variance S? = Var(Guo(f))t for any time t.
From this we can determine, for instance, the expected capital growth and
the time t; required for V(f) to be at least k standard deviations above V5.
First, we can show by our previous methods that Var(G.(f)) = s2f2, hence
Sdev(Goo(f)) = sf. Solving trgeo = kt,lc/zsdev(Goo(f)) gives txg2 hence
the expected capital growth t;g.,, from which we find ¢;. The results are
summarized in equations (7.3).

(7.3) fr=m=r)/s"  go(f)=r+f(m—1r)=s"f/2

9oo (f*) = (m—7)* /25" +r
Var (Go (f)) = s’f*  8dev (G (f)) = sf
tigoo(f) = K*s*f*/g0
th = ks°f%/g2,

Examination of the expressions for ;9. (f) and t; show that each one
increases as f increases, for 0 < f < f, where f, is the positive root of
s2f2/2 —(m—r)f —r=0and f, > 2f*

Comment: The capital asset pricing model (CAPM) says that the market
portfolio lies on the Markowitz efficient frontier E in the (s,m) plane at a
(generally) unique point P = (sg,™mg) such that the line determined by P
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and (s = 0,m = r) is tangent to F (at P). The slope of this line is the
Sharpe ratio S = (mg — 79)/$o and from (7.3) goo(f*) = S%/2 + r so the
maximum growth rate g.,(f*) depends, for fixed r, only on the Sharpe ratio.
(See Quaife (1995). Again from (7.3), f* = 1 when m = r + s% in which
case the Kelly investor will select the market portfolio without borrowing or
lending. If m > r + s? the Kelly investor will use leverage and if m < r + s2
he will invest partly in T-bills and partly in the market portfolio. Thus the
Kelly investor will dynamically reallocate as f* changes over time because
of flunctuations in the forecast m,r and s?, as well as in the prices of the
portfolio securities.

From (7.3), goo(1) = m — s%/2 so the portfolios in the (s,m) plane satis-
fying m —s?/2 = C, where C'is a constant, all have the same growth rate. In
the continuous approximation, the Kelly investor appears to have the utility
function U(s,m) = m — s%/2. Thus, for any (closed, bounded) set of portfo-
lios, the best portfolios are exactly those in the subset that maximizes the one
parameter family m —s?/2 = C. See Kritzman in Bernstein and Damodaran
editors (1998), Chapter 2, for an elementary introduction to related ideas.

Ezample 7.1. The long run revisited. For this example let » = 0. Then
the basic equations (7.3) simplify to

(7.4) r=0: f'=m/s’ guo(f) =mf—s*f?/2
oo f*) = m?/2?
Var (Go (f)) = 8 Sdev(Goo (f)) = sf
How long will it take for V(f*) > V, with a specified probability? How
about V(f*/2)? To find the time ¢t needed for V(f) > V; at the k standard
deviations level of significance (k = 1, P = 84%; k = 2, P = 98%, etc.) w
solve for t = t:

(7.5) t900 (f) = kt'/2Sdev (Goo (f))

We get more insight by normalizing all f with f*. Setting f = c¢f*
throughout, we find when r =0

(7.6) r=0: f*=m/s’ f=cm/s?
goo (cf*) =m? (c — ¢*/2) /5?
Sdev (G (cf*)) = cm/s
tgo (cf*) = K%c/(1~c/2)
t(k, of*) = K/ (m*(1-c/2)?)
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Equations (7.6) contain a remarkable result: V(f) > V; at the k standard
deviation level of significance occurs when expected capital growth tg,, =
k%c/(1—c/2) and this result is independent of m and s. For f = f* (c=1lin
(7.6)), this happens for k = 1 at tg,, = 2 corresponding to V = Ve? and at
k = 2 for tgo = 8 corresponding to V = V;e®. Now €8 = 2981 and at a 10%
annual (instantaneous) growth rate, it takes 80 years to have a probability
of 98 % for V > V. At a 20% annual instantaneous rate it takes 40 years.
However, for f = f*/2, the number for ¥ = 1 and 2 are g, = 2/3 and 8/3,
respectively, just 1/3 as large. So the waiting times for Prob(V > V;) to
exceed 84% and 98% become 6.7 years and 26.7 years, respectively, and the
expected growth rate is reduced to 3/4 of that for f*.

Comment: Fractional Kelly versus Kelly when r = 0.

From equations (7.6) we see that go.(cf*)/9due(f*) = ¢c(2—-1¢), 0 < c <
00, showing how the growth rate relative to the maximum varies with c.
The relative risk Sdev(Goo(cf*))/Sdev(Goo(f*)) = c and the relative time to
achieve the same expected total growth is 1/¢(2 — ¢), 0 < ¢ < 2. Thus the
relative “spread” for the same expected total growth is 1/(2 —¢), 0 < ¢ < 2.
Thus, even by choosing ¢ very small, the spread around a given expected
growth cannot be reduced by 1/2. The corresponding results are not quite
as simple when r > 0.

(b) The (almost) real world.

Assume that prices change “continuously” (no “jumps”), that portfolios
may be revised “ continuously”, and that there are no transactions costs
(market impact, commissions, “overhead”), or taxes (Federal, State, city,
exchange, etc.). Then our previous model applies.

FExample 7.2. The S & P 500 Index. Using historical data we make the
rough estimates m = .11, s = .15, » = .06. The equations we need for r # 0
are the generalizations of (7.6) to 7 # 0 and f = ¢f*, which follow from (7.3):

(7.7) cf* =c(m—r)/s?
g (cf?) = ((m=1)*(c=¢/2)) /s> +r
Sdev (G (cf*)) = c(m—1r)/s
t9es (cf) = K/ (c— /2475 /(m—1)?)
t(k,cf") = ki ((m—r)2 /32>/(<(m—r)2 /32) (c—02/2> —|—7")2

If we define m = m —r, é’oo = Gy . 7, Joo = Joo — T, then substitution
into equations (7.7) give equations (7.6), showing the relation between the
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two sets. It also shows that examples and conclusions about P(V, > V)
in the r = 0 case are equivalent to those about P(ln(V(¢)/Vo) > rt) in the
r # 0 case. Thus we can compare various strategies versus an investment
compounding at a constant riskless rate r such as zero coupon U.S. Treasury
bonds.

From equations (7.7) and ¢ = 1, we find

f* =222 9oo () = 115, Sdev(Goo(f*)) = .33

tgoo(f*) = 0.96k2 t = 8.32k? years

Thus, with f* = 2.22, after 8.32 years the probability is 84% that V,, > 1}
and the expected value of log(V,,/Vp) = .96 so the median value of V,,/V; will
be about €% = 2.61.

With the usual unlevered f = 1, and ¢ = 0.45, we find

Joo(1) =m —6%/2=.09875  Sdev (G(1)) = 0.15

tgo(1) = 0.22k2  t(k, A45f*) = 2.31k? years.
Writing  tge = h(c) as

he) =K/ (1/c+rs?/ ((m—r)*c?) - 1/2)

we see that h(c) increases as c increases, at least up to the point ¢ = 2,

corresponding to 2f*.
Writing t(k, cf*) = t(c) as

t(c) = k* ((m —r)? /s2> / ((m —r)? /52) (1—¢/2)+r/c?

shows that t(c) also increases as ¢ increases, at least up to the point ¢ = 2.
Thus for smaller (more conservative) f = cf*, ¢ < 2, specified levels of
P(V, > Vp) are reached earlier. For ¢ < 1, this comes with a reduction in
growth rate, which reduction is relatively small for f near f*.

Note: During the period 1975-1997 the short term T-bill total return for
the year, a proxy for r if the investor lends (i.e. f < 1), varied from a low of
2.90% (1993) to a high of 14.71% (1981). For details, see Ibbotson Associates
1998 (or latest available) Yearbook.

A large well connected investor might be able to borrow at broker’s call
plus about 1%, which might be approximated by T-bills plus 1%. This might
be a reasonable estimate for the investor who borrows (f > 1). For others
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the rates are likely to be higher. For instance the prime rate from 1975-
1997 varied from a low of 6% (1993) to a high of 19% (1981), according to
Associates First Capital Corporation (1998).

As r flunctuates, we expect m to tend to fluctuate inversely (high interest
rates tend to depress stock prices for well known reasons). Accordingly, f*
and g, will also fluctuate so the long term S&P index fund investor needs a
procedure for periodically re-estimating and revising f* and his desired level
of leverage or cash.

To illustrate the impact of r, > r, where r} is the investor’s borrowing
rate, suppose 7 in example (7.2) is r + 2% or .08, a choice based on the
above cited historical values for r, which is intermediate between “good”
ry =1 + 1%, and “poor” 7, = the prime rate = r + 3%. We replace r by
in equations (7.7) and, if f* > 1, f* = 1.33, goo(f*) = .100, Sdev(G(f*)) =
20, tgoo(f*) = .4k?, t = 4k? years. Note how greatly f* is reduced.

Comment: Taxes.

Suppose for simplicity that all gains are subject to a constant continuous
tax rate T' and that all losses are subject to a constant continuous tax refund
at the same rate T". Think of the taxing entities, collectively, as a partner
that shares a fraction T of all gains and losses. Then equations (7.7) become:

(7.7T) cf* = c¢fm—r)/s*(1-T)
geolef?) = ((m—r)*c—c*/2)) /s +r(1=T)
Sdev (Geo(cf*)) = c(m—7)/s
tgoo(cf*) = k202/(c—02/2+7°(1—T) 2/(771—7"2))

t(k, cof*) = K ((m—r?/s?) [ (((m~1/s) (e~ /) +r(1 - T))°

It is interesting to see that cf* increases by the factor 1/(1 — T). For
a high income California resident, the combined state and federal marginal
tax rate is 45% so this factor is 1/.55 = 1.82. The amplification of cf*
leads to the same growth rate as before except for a reduction by rT'. The
Sdev is unchanged and t(k, cf*) is increased slightly. However, as a practical
matter, the much higher leverage needed with a high tax rate is typically not
allowed under the margin regulation or is not advisable because the inability
to continuously adjust in the real world creates dangers that increase rapidly
with the degree of leverage. _

(c) The case for “fractional Kelly”. Figure 5 shows three g curves for
the true m : my = 0.5m,, 1.0m, and 1.5m,, where m, is the estimated value
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of m. The vertical lines and the slanting arrows illustrate the reduction in g
for the three choices of: f = 0.5f7, fs and 1.5f7. For example with f = 0.5f7
or “half Kelly”, we have no loss and achieve the maximum g = .25, in case
my = 0.5m,. But if my = m, then g = .75, a loss of .25 and if m; = 1.5m,
then g = 1.25, a loss of 1.0, where all g are in units of m2/2s%. This is
indicated both by LOSS; and LOSS; on the vertical line above f/fF = .5,
and by the two corresponding arrows which lead upward, and in this case to
the right, from this line. A disaster occurs when m; = .5m, but we choose
f = 1.5fF. This combines overbetting f by 50% with the overestimate of
me = 2m;. Then g = —.75 and we will be ruined. It is still bad to choose
f = f2 when my = .5m, for then g = 0 and we suffer increasingly wild
oscillations, both up and down, around our initial capital. During a large
downward oscillation experience shows that bettors will generally either quit
or be eliminated by a minimum bet size requirement.

Some lessons here are: (1) To the extent m. is an uncertain
estimate of ms, it is wise to assume m; < m, and to choose f < £}
by enough to prevent g < 0.

Estimates of m, in the stock market have many uncertainties and, in
particular, are more likely to be too high than too low. Securities prices follow
a “non-stationary process” where m and s vary somewhat unpredictably over
time. The economic situation can change for comparies, industries, or the
economy as a whole. Systems that worked may be partly or entirely based
on data mining so m; may be substantially less than m.. Changes in the
“rules” such as commissions, tax laws, margin regulations, insider trading
laws, etc., can also affect m;. Systems that do work attract capital, which
tends to push exceptional m; down towards average values. The drift down
means m, > my is likely.

Sports betting has much the same caveats as the securities markets, with
its own differences in detail. Rules changes, for instance, might include:
adding expansion teams; the three point rule in basketball; playing overtime
sessions to break a tie; changing types of bats, balls, gloves, racquets or
surfaces.

Blackjack differs from the securities and sports betting markets in that
the probabilities of outcomes can in principle generally be either calculated
or simulated to any desired degree of accuracy. But even here m; is likely
to be at least somewhat less than m,. Consider player fatigue and errors,
calculational errors and mistakes in applying either blackjack theory or Kelly
theory (e.g. calculating f* correctly, for which some of the issues have been
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discussed aboved), effects of a fixed shuffle point, non-random shuffling, pref-
erential shuffling, cheating, etc.

(2) Subject to (1), choosing f in the range 0.5 < f < ! offers
protection against g < 0 with a reduction of g that is likely to be
no more than 25%.

Example 7.83. The great compounder. In 1964 a young hedge fund man-
ager acquired a substantial interest in a small New England textile company
called Berkshire Hathaway. The stock traded then at 20. In 1998 it traded
at 70,000, a multiple of 3500, and an annualized compound growth rate of
about 27%, or an instantaneous rate of 24%. The once young hedge fund
manager Warren Buffett is now acknowledged as the greatest investor of our
time, and the world’s second richest man. You may read about Buffett in
(Buffett and Clark, 1997), Hagstrom (1994), Kilpatrick (1994), and Lowen-
stein (1995). If, as I was, you were fortunate enough to meet Buffett and
identify the Berkshire opportunity, what strategy does our method suggest?
Assume (the somewhat smaller drift rate) m = .20, s = .15, » = .06. (Note:
Plausible arguments for a smaller future drift rate include regression towards
the mean, the increasing size of Berkshire, and risk from the aging of man-
agement. A counter-argument is that Berkshire’s compounding rate has been
as high in its later years as in its earlier years. However, the S&P 500 Index
has performed much better in recent years so the spread between the growth
rates of the Index and of Berkshire has been somewhat less. So, if we expect
the Index growth rate to revert towards the historical mean, then we expect
Berkshire to do so even more. From equations (7.3) or (7.7),

Fr=622 go(f*) =495  Sdev(Goo(f*)) = .93

t90o(f*) = 1.76k* ¢ = 3.54k? years
Compare this to the unlevered portfolio, where f = 1 and ¢ = 1/6.22 = .1607.
We find:
=1 go(f)=.189 Sdev(Goo(f)) = .15

thgoo(f) = 119k ty = 0.63k2 years.

Leverage to the level 6.22 would be inadvisable here in the real world
because securities prices may change suddenly and discontinously. In the
crash of October, 1987, the S&P 500 index dropped 23% in a single day.
If this happened at leverage of 2.0, the new leverage would suddenly be
77/27=2.85 before readjustment by selling part of the portfolio. In the case
of Berkshire, which is a large well-diversified portfolio, suppose we chose the
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conservative f = 2.0. Note that this is the maximum initial leverage allowed
“customers” under current regulations. Then g,(2) = 0.295. The values
in 30 years for median V,,/Vj are approximately: f = 1, V/Vy = 288,
f =2 Vo/Vo=06,974; f =622 V,/Vy = 2.86x 10° So the differences in
results of leveraging are enormous in a generation. (Note: Art Quaife reports
s = .24 for 1980-1997. The reader is invited to explore the example with this
change.)

The results of section 3 apply directly to this continuous approximation
model of a (possibly) leveraged securities portfolio. The reason is that both
involve the same “dynamics”, namely log G,(f) is approximated as (scaled)
Brownian motion with drift. So we can answer the same questions here for
our portfolio that were answered in section 3 for casino betting. For instance

(3.2) becomes
(7.8) Prob(V(t)/Vy < z for some t) = 2" (29+ /Var(Gw )

where A means exponentiation and 0 < z < 1. Using (7.4), for r = 0 and
f=r* 290 /Var(G) = 1 so this simplifies to

(7.9) | Prob(:) =z

Compare with Example 3.3. For 0 < r < m and f = f* the exponent of z
in (7.9) becomes 1 + 2rs?/(m — r)? and has a positive first derivative so, as
r increases, P(-) decreases (since 0 < z < 1, tending to 0 as r tends to m,
which is what we expect.

(d) A remarkable formula.

In earlier versions of this paper the exponent in equations (3.2), (7.8) and
(7.9) were off by a factor of 2, which I had inadvertently dropped during my
derivation. Subsequently Don Schlesinger posted (without details) two more
general continuous approximation formulas for the » = 0 case on the internet
at www.bjmath.com dated June 19, 1997.

If V4 is the initial investment and y > 1 > x > 0 then for f* the proba-
bility that V(t) reaches yVj before zVj is

(7.10) Prob (V (¢, f*) reaches yVj before zVp) = (1 — z)/ (1 — (z/y))
and more generally, for f =cf*, 0 < ¢ < 2,

(7.11) Prob (V (¢, cf*) reaches yVj before zV})
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= [1=2"(2/c— /1 = (z/y)"(2/c - 1)]
where A means exponentiation.

Clearly (7.10) follows from (7.11) by choosing ¢ = 1. The r = 0 case of
our equation (7.8) follows from (7.11) and the r = 0 case of our equation
(7.9) follows from (7.10). We can derive a generalization of (7.11) by using
the classical gambler’s ruin formula (Cox and Miller, page 31, eqn. (2.0)) and
passing to the limit as step size tends to zero (Cox and Miller, pp. 205-6),
where we think of log (V (¢, f)/Vb) as following a diffusion process with mean
Joo and variance v(G ), initial value 0, and absorbing barriers at logy and
log z. The result is

(7.12)  Prob (V (¢, cf*) reaches yVj before zVp) = [1 — z"a]/[1 — (z/y)"q]

where a = 2¢o/V(Gw) = 2M/V where M and V are the drift and
variance, respectively, of the diffusion process per unit time. Alternatively,
(7.12) is a simple restatement of the known solution for the Wiener process
with two absorbing barriers (Cox and Miller, example 5.5).

As Schlesinger notes, choosing z = 1/2 and y = 2 in (7.10) gives
Prob(V(t, f*) doubles before halving) = 2/3. Now consider a gambler or
investor who focuses only on values V,, = 2"V,, n = 0, +1, +2, ... multiples
of his initial capital. In log space, log(V,,/Vy) = nlog2 so we have a random
walk on the integer multiples of log2, where the probability of an increase
is p = 2/3 and of a decrease, ¢ = 1/3. This gives us a convenient compact
visualization of the Kelly strategy’s level of risk.

If instead we choose ¢ = 1/2 (“half Kelly”), equation (7.11) gives
Prob(V (¢, f*/2) doubles before halving) = 8/9 yet the growth rate
9oo(f*/2) = 7590 (f*) so “half Kelly” has 3/4 the growth rate but much
less chance of a big loss.

A second useful visualization of comparative risk comes from equation
(7.8) which gives

(7.13) Prob (V (¢, cf*)/Vo < z for some t) = " (2/c — 1)

For ¢ = 1 we had Prob(:) = z and for ¢ = 1/2 we get Prob(:) = 23. Thus
“half Kelly” has a much lessened likelihood of severe capital loss. The chance
of ever losing half the starting capital is 1/2 for f = f* but only 1/8 for
f = f*/2. My gambling and investment experience, as well as reports from
numerous blackjack players and teams, suggests that most people strongly
prefer the increased safety and psychological comfort of “half Kelly” (or some
nearby value), in exchange for giving up 1/4 of their growth rate.
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8 A Case Study

In the summer of 1997 the XYZ Corporation (pseudonym) received a sub-
stantial amount of cash. This prompted a review of its portfolio, which
is shown in Table 8.1 in the column 8/17/97. The portfolio was 54% in
Biotime, ticker BTIM, a NASDAQ biotechnology company. This was due
to existing and historical relationships between people in XYZ Corp. and in
BTIM. XYZ’s officers and directors were very knowledgeable about BTIM
and felt they were especially qualified to evaluate it as an investment. They
wished to retain a substantial position in BTIM.

The portfolio held Berkshire Hathaway, ticker BRK, having first pur-
chased it in 1991.

(a) The constraints.

Dr. Quaife determined the Kelly optimal portfolio for XYZ Corp. subject
to certain constraints. The list of allowable securities was limited to BTIM,
BRK, the Vanguard 500 (S&P 500) Index Fund, and T-bills. Being short T-
bills was used as a proxy for margin debt. The XYZ broker actually charges
about 2% more, which has been ignored in this analysis. The simple CAPM
(capital asset pricing model) suggests that the investor only need consider the
market portfolio (for which the S&P 500 is being substituted here, with well
known caveats) and borrowing or lending. Both Quaife and the author were
convinced that BRK was and is a superior alternative and their knowledge
about and long experience with BRK supported this.

XYZ Corp. was subject to margin requirements of 50% initially and
30% maintenance, meaning for a portfolio of securities purchased that initial
margin debt (money lent by the broker) was limited to 50% of the value of
the securities, and that whenever the value of the account net of margin debt
was less than 30% of the value of the securities owned, then securities would
have to be sold until the 30% figure was restored.

In addition XYZ Corp. wished to continue with a “significant” part of
its” portfolio in BTIM.

(b) The analysis and results.

Using monthly data from 3/31/92 through 6/30/97, a total of 63 months,
Quaife finds the means, covariances, etc. given in Table 8.1.
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TABLE 8.1 Statistics for logs of monthly wealth relatives, 3/31/92
through 6/30/97.

Berkshire BioTime SP500 T-bills

Monthly  Mean 0.0264 0.0186 0.0146 0.0035
Standard deviation 0.0582 0.2237  0.0268 0.0008
Annual Mean 0.3167 0.2227  0.1753 0.0426
Standard deviation 0.2016 0.7748 0.0929 0.0028
Monthly  Covariance 0.0034 -0.0021 0.0005 1.2E-06

0.0500 -0.0001 3.2E-05
0.0007  5.7E-06
6.7E-07

Monthly  Correlation 1.0000 -0.1581  0.2954 0.0257
1.0000 -0.0237 0.1773

1.0000 0.2610

1.0000

Note from Table 8.1 that BRK has a higher mean and a lower standard
deviation than BTIM, hence we expect it to be favored by the analysis. But
note also the negative correlation with BTIM, which suggests that adding
some BTIM to BRK may prove advantageous.

Using the statistics from Table 8.1, Quaife finds the following optimal
portfolios, under various assumptions about borrowing.

TABLE 8.2 Optimal portfolio allocations with various assumptions
about borrowing.

Security Fraction
Security No Borrowing | 50% margin | Unrestricted borrowing
Berkshire 0.63 1.50 6.26
BioTime 0.37 .50 1.18
S&P 500 0.00 0.00 12.61
T-bills 0.00 -1.00 -19.04
Portfolio growth rate
mean 0.36 0.62 2.10
standard deviation 0.29 0.45 2.03

As expected, BRK is important and favored over BTIM but some BTIM
added to the BRK is better than none,

If unrestricted borrowing were allowed it would be foolish to choose the
corresponding portfolio in Table 8.2. The various underlying assumptions
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are only approximations with varying degrees of validity: Stock prices do
not change continuously; portfolios can’t be adjusted continuously; transac-
tions are not costless; the borrowing rate is greater than the T-bill rate; the
after tax return, if different, needs to be used; the process which generates
securities returns is not stationary and our point estimates of the statistics
in Table 8.1 are uncertain. We have also noted earlier that because “overbet-
ting” is much more harmful than underbetting, “fractional Kelly” is prudent
to the extent the results of the Kelly calculations reflect uncertainties.

In fact, the data used comes from part of the period 1982-1997, the great-
est bull market in history. We would expect returns in the future to regress
towards the mean so the means in Table 8.1 are likely to be overestimates of
the near future. The data set is necessarily short, which introduces more un-
certainty, because it is limited by the amount of BTIM data. As a sensitivity
test, Quaife used conservative (mean, std. dev.) values for the price relatives
(not their logs) for BRK of (1.15, .20), BTIM of (1.15, 1.0) and the S&P 500
from 1926-95 from Ibbotson (1996) of (1.125, .204) and the correlations from
Table 8.1. The result was fractions of 1.65, 0.17, 0.18 and -1.00 respectively
for BRK, BTIM, S&P 500 and T-bills. The mean growth rate was .19 and
its standard deviation was 0.30.

(c) The recommendation and the result.

The 50% margin portfolio reallocations of Table 8.2 were recommended
to XYZ Corp.’s board on 8/17/97 and could have been implemented at once.
The board elected to do nothing. On 10/9/97 (in hindsight, a good sale at
a good price) it sold some BTIM and left the proceeds in cash (not good).
Finally on 2/9/98 after a discussion with both Quaife and the author, it
purchased 10 BRK (thereby gaining almost $140,000 by 3/31/98, as it hap-
pened). Table 8.3 gives the result of the actual policy, which led to an increase
of 73.5%. Table 4 shows what would have happened with the recommended
policy with no rebalance and with one rebalance on 10/6/97. The gains would
have been 117.6% and 199.4%, respectively. The gains over the suboptimal
board policy were an additional $475,935 and $1,359,826, respectively.

The optimal policy displays three important features in this example: the
use of leverage, the initial allocation of the portfolio, and possible rebalanc-
ing (reallocation) of the portfolio over time. Each of these was potentially
important in determining the final result. The potential impact of continu-
ously rebalancing to maintain maximum margin is illustrated in Thorp and
Kassouf (1967), Appendix A, The Avalanche Effort.

The large loss from the suboptimal policy was much more than what
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would have been expected because BRK and BTIM appreciated remarkably.
In 0.62 years, BRK was up 60.4% and BTIM was up 62.9%. This tells us that
— atypically — in the absence of rebalancing, the relative initial proportions
of BRK and BTIM didn’t matter much over the actual time period. How-
ever, rebalancing to adjust the relative proportions of BRK and BTIM was
important, as the actual policy’s sale of some BTIM on 10/9/97 illustrated.
Also, rebalancing was important for adjusting the margin level as prices, in
this instance, rose rapidly.

Table 8.2 illustrates what we might have normally expected to gain by
using 50% margin, rather than no margin. We expect the difference in the me-
dians of the portfolio distributions to be $1,080,736 [exp(.62*.62) —exp(.36 x
62)] = $236,316 or 21.9% which is still large.

(d)The theory for a portfolio of securities.

Consider first the unconstrained case with a riskless security (T-bills) with
portfolio fraction fy and n securities with portfolio fractions fi,..fn. Suppose
the rate of return on the riskless security is r and, to simplify the discussion,
that this is also the rate for borrowing, lending, and the rate paid on short
sale proceeds. Let C' = (s;;) be the matrix such that s;5,4,5 = 1,...,n, is
the covariance of the ¢th and jth securities and M = (my, my,...,m,)T be
the row vector such that m;,7 = 1,...,n, is the drift rate of the ith security.
Then the portfolio satisfies

(8.1) fot. ..+ fa=1

m= for+ fimi+ ..+ fum, = r+ filmi—7)+ ...+ fu(m, — 1)
= r+FT'(M - R)
s?2 = FTCF
where FT = (fi,..., f») and T means “transpose”, and R is the column
vector (r,7,...,7)T of length n.
Then our previous formulas and results for one security plus a riskless
security apply to goo(f1,-., fn) = m — $2/2. This is a standard quadratic

maximization problem. Using (8.1) and solving the simultaneous equations
090 /0fi = 0,1 =1,...,n, we get

(8.2) F*=C™'[M - R)
Joo(f1s s fr) =7 + (F)TCF* /2
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where for a unique solution we require C~! to exist, i.e. det C' # 0. When all
the securities are uncorrelated, C' is diagonal and we have f = (m; — 1) /sy
or f} = (m; —r)/s?, which agrees with eqn. (7.3) when n = 1.

Note: BRK issued a new class of common, ticker symbol BRK.B, with
the old common changing its symbol to BRK.A. One share of BRK.A can be
converted to 30 shares of BRK.B at any time, but not the reverse. BRK.B
has lesser voting rights and no right to assign a portion of the annual quota of
charitable contributions. Both we and the market consider these differences
insignificant and the A has consistently traded at about 30 times the price
of the B.

If the price ratio were always exactly 30 to 1 and both these securities
were included in an analysis, they would each have the same covariances with
other securities, so det C = 0 and C~! doesn’t exist.

If there is an initial margin constraint of ¢, 0 < g < 1, then we have the
additional restriction

(8.2) | fil+o+ 1S /g

The n dimensional subset in (8.2} is closed and bounded.

If the rate for borrowing to finance the portfolio is 1, = r + €3, €, > 0,
and the rate paid on the short sale proceeds is r; = r — e, €, > 0, then the
m in equation (8.1) is altered. Let z* = max(z,0) and £~ = max(0, —z) so
z =zt -z for all z. Define f+ = fi + ...+ f, the fraction of the portfolio
held long. Let f~ = fi +... + f,, the fraction of the portfolio held short.
Case 1. fT <1

(8.3.1) m=r+ filmy —7)+ ..+ fu(mn—7) —€sf”
Case 2. ft>1

(8.3.2) m=r+ film —7)+ ...+ fu(m, —7) —e(fT — 1) —esf~

9 My Experience With The Kelly Approach

How does the Kelly-optimal approach do in practice in the securities markets?
In alittle-known paper (Thorp, 1971) I discussed the use of the Kelly criterion
for portfolio management. Page 220 mentions that “On November 3, 1969, a
private institutional investor decided to ...use the Kelly criterion to allocate
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its assets.” This was actually a private limited partnership, specializing in
convertible hedging, which I managed. A notable competitor at the time (see
Institutional Investor, 1998) was future Nobel prize winner Harry Markowitz.
After 20 months, our record as cited was a gain of 39.9% versus a gain for
the Dow Jones Industrial Average of +4.2%. Markowitz dropped out after
a couple of years, but we liked our results and persisted. What would the
future bring?

It is now May, 1998, twenty eight and a half years since the investment
program began. The partnership and its continuations have compounded
at approximately 20% annually with a standard deviation of about 6% and
approximately zero correlation with the market (“market neutral”). Ten
thousand dollars would, tax exempt, now be worth 18 million dollars. To
help persuade you that this may not be luck, I estimate that during this
period I have made about $80 billion worth of purchases and sales (“action”,
in casino language) for my investors. This breaks down into something like
one and a quarter million individual “bets” averaging about $65,000 each,
with on average hundreds of “positions” in place at any one time. Over all,
it would seem to be a moderately “long run” with a high probability that
the excess performance is more than chance.

10 Conclusion

Those individuals or institutions who are long term compounders should
consider the possibility of using the Kelly criterion to asymptotically max-
imize the expected compound growth rate of their wealth. Investors with
less tolerance for intermediate term risk may prefer to use a lesser function.
Long term compounders ought to avoid using a greater fraction (“overbet-
ting”). Therefore, to the extent that future probabilities are uncertain, long
term compounders should further limit their investment fraction enough to
prevent a significant risk of overbetting.

Acknowledgements. [ thank Dr. Jerry Baesel, Professor Sid Browne,
Professor Peter Griffin, Dr. Art Quaife, and Don Schlesinger for comments
and corrections and to Richard Reid for posting this paper on his website.
I am also indebted to Dr. Art Quaife for allowing me to use his analysis in
the case study.

This paper has been revised and expanded since its presentation at the
10th International Conference on Gambling and Risk Taking.

38



TABLE 8.3 Results: What XYZ Corp. actually did.

Years from 8/17/97

Security
. Berkshire

BioTime
T-bills
Total;

Berkshire
BioTime
T-bills
Total:

Increase from 8/17/97

Berkshire
Biotime
T-bills
Total:

Berkshire
BioTime

ACTUAL
8/17/97  10/9/97 10/9/97
0.00 0.16 0.15

2/9/98

2/9/98

3/31/98

0.48

0.48

0.62

41,900.00 45,600.00 45,600.00 53,450.00 53,450.00 67,200.00

8.75 22.75 22.75 12.88 12.88 14.25
Original New New

Investment Investment Investment Investment Investment Investment

209,500 228,000 228,000 267,250 801,750 1,008,000

581,543 1,512,011 1,102,511 623,948 623,948 690,584

289694 291,381 700,881 710,393 175,893 176,859

1,080,736 2,031,392 2,031,392 1,601,591 1,601,591 1,875,443

950,656 950,656 520,855 520,855 794,706

Fraction Fraction Fraction Fraction Fraction Fraction

0.19 0.1 0.1 0.17 0.50 0.54

0.54 0.74 0.54 0.39 0.39 0.37

0.27 0.14 0.35 0.44 0.11 0.09

1.00 1.00 1.00 1.00 1.00 1.00

Shares  Shares  Shares  Shares  Shares Shares

5. 5 5 5 15 15

66,462 66,462 48,462 48,462 48,462 48462



TABLE 8.4 Results: If XYZ Corp. had followed the Quaife recommendations.

QUAIFE RECOMMENDED
Start | No Rebalance | One Rebalance

I
8/17/97  8M7/97 |
I

10/6/97 10/6/97  3/31/98

I
-
Years from 8/17/97 0.00 0.00 | 2| 0.14 0.14 0.62
I I
Security | | : :
Berkshire 41 900.00 41, 900 0 | 67,200.00 | 46,100.00 46,100.00 67,200.00
BioTime - 875 75 | 14.25 | 25.33 25.33 14.25
T-bills | |
Total: | |
Original  Balance | | Rebalance
Investment Investment | Investment | Investment Investment Investment
Berkshire 209,500 1,621,104 | 2,609,957 | 1,783,602 3,385,420 4,934,929
BioTime 581,543 540,368 | 880,028 | 1,564,494 1,128,473 634,766
T-bills 289,694 -1,080,736 | -1.128.608 | -1,091,149 -2,256,947 -2,334,427
Total: 1,080,736 1,080,736 | 2,351,377 | 2,256,947 2,256,947 3,235,269
| I
Increase from 8/17/97 | 1,270,641 | 1,176,210 1,176,210 2,154,532
I I
Excess over suboptimal Board | |
investment strategy (ACTUAL) ) | 475,935 | 1,359,826
Optimal | |
Fraction Fraction | . Fraction |  Fraction Fraction  Fraction
Berkshire 0.19 - 1.50 | 111 0.79 1.50 1.53
Biotime 0.54 0.50 | 0.37 | 0.69 0.50 0.20
T-bills ' 0.27 -1 00I =048 | - :0.48 -1.00 -0.72
Total: 1.00 0| 1.00 | 1.00 1.00 1.00
: o I
Shares Shares | Shares | Shares Shares Shares
Berkshire 5 39 | 39 | 39 73 73

BioTime 66,462 61,756 | 61,756 | 61,756 44,545 44,545



